Berger M., Schulz D., and Berakdar J.
Nanomaterials 11, pp 1258 (2021)Quantum scars refer to an enhanced localization of the probability density of states in the spectral region with a high energy level density. Scars are discussed for a number of confined pure and impurity-doped electronic systems. Here, we studied the role of spin on quantum scarring for a generic system, namely a semiconductor-heterostructure-based two-dimensional electron gas subjected to a confining potential, an external magnetic field, and a Rashba-type spin-orbit coupling. Calculating the high energy spectrum for each spin channel and corresponding states, as well as employing statistical methods known for the spinless case, we showed that spin-dependent scarring occurs in a spin-coupled electronic system. Scars can be spin mixed or spin polarized and may be detected via transport measurements or spin-polarized scanning tunneling spectroscopy.
Full text:PDF (6921kB)
(For personal use only. Please send an email to our secretary if you need the paper.)