Info

Chiral logic computing with twisted antiferromagnetic magnon modes

Jia C., Chen M., Schäffer A. F., Berakdar J.

npj Comput Mater 7, pp 101 (2021)

Antiferromagnetic (AFM) materials offer an exciting platform for ultrafast information handling with low cross-talks and compatibility with existing technology. Particularly interesting for low-energy cost computing is the spin wave-based realization of logic gates, which has been demonstrated experimentally for ferromagnetic waveguides. Here, we predict chiral magnonic eigenmodes with a finite intrinsic, magnonic orbital angular momentum ℓ in AFM waveguides. ℓ is an unbounded integer determined by the spatial topology of the mode. We show how these chiral modes can serve for multiplex AFM magnonic computing by demonstrating the operation of several symmetry- and topology-protected logic gates. A Dzyaloshinskii–Moriya interaction may arise at the waveguide boundaries, allowing coupling to external electric fields and resulting in a Faraday effect. The uncovered aspects highlight the potential of AFM spintronics for swift data communication and handling with high fidelity and at a low-energy cost.

Full text:

PDF (2626kB)


(For personal use only. Please send an email to our secretary if you need the paper.)