Info

Geometric rearrangement of adsorbate driven by the charge transfer

Pavlyukh Y., Berakdar J., and Hübner W.

Physica Status Solidi B 247, pp 1056 (2010)

Adsorption of alkali atoms induces a significant charge redistribution in the region around the adatom. Such charge displacement is associated with a large dipole moment responsible for the interaction of adatoms and a reduction of the surface work function. In addition to these well-known effects our first principles simulations for the Na9+ cluster on the Cu(001) surface demonstrate how the charge transfer (CT) from the adsorbate to the substrate can drastically change the geometric structure of the cluster. We report on a detailed study of the adsorption process using quantum chemistry. A representation of the substrate by a cluster of 54 Cu atoms allows us to treat quantum mechanically the electronic structure of both systems, the adsorbate and the surface, on equal footing. Subsequently, we analyze the charge distribution in the composite system. Convergence of the results is verified by considering a much larger substrate cluster containing 126 Cu atoms. The role of the CT is further elucidated by the geometry optimization of the bare cluster with and without an electron deficit. It is shown that the CT drives the system to a meta-stable state which thereafter relaxes to a new configuration.

Full text:

PDF (1120kB)


(For personal use only. Please send an email to our secretary if you need the paper.)